Portable canopy analysis system for crops

SunScan uses field measurements of PAR in crop canopies to provide valuable information about Leaf Area Index and biomass production.

- Measures incident and transmitted PAR in plant canopies
- Direct display of Leaf Area Index (LAI)
- Unique BF5 Sunshine Sensor reference measures Direct and Diffuse components of incident light
- Usable in cloudy, clear and changeable conditions
- Portable, weatherproof and battery powered

Introduction

SunScan is a simple and flexible system for measuring and analysing the incident and transmitted Photosynthetically Active Radiation (PAR) within crop canopies. It provides vital information about the penetration of PAR into crops, and is essential in work such as comparative crop studies, for separating out the effects of cultivar and treatment. It is particularly well suited to low regular canopies (as found in many agricultural crops).

SunScan users don't have to wait for special weather conditions – the probe can be used in most light conditions (but best near mid-day).

SunScan Probe

The probe has an array of 64 PAR sensors embedded in a 1m long probe, and is connected via an RS-232 cable to a handheld PDA. As a reading is taken, all the sensors are scanned and the measurements are transmitted to the PDA.

The average light level along the probe is calculated, and all of the individual sensor readings are available if required for detailed PAR mapping. An operating button on the probe handle enables readings successive to be taken quickly and simply on demand. Alternatively, unattended logging can be conducted under program control from the PDA. Readings are in units of PAR quantum flux (µmol.m⁻².s⁻¹) and units of LAI (m².m⁻²).
SunScan System choices

SunScan is modular and expandable. Researchers can specify a system that suits their own performance requirements and budget:

<table>
<thead>
<tr>
<th>System type</th>
<th>Features and advantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS1-COM Complete System</td>
<td>The full system provides a powerful canopy analysis tool. It can instantly calculate LAI, measure PAR interception using either spot readings or unattended logging, and measure sunflecks.</td>
</tr>
<tr>
<td>SS1-COM-R4 Complete System with Radio Link</td>
<td>The radio link has a range of 100 to 200 m and replaces the cable between the SunScan Probe and BF5 - particularly useful in taller canopies or where readings are required at widely spaced locations.</td>
</tr>
<tr>
<td>SS1-STD3 Standard System</td>
<td>The Standard System is able to make the full range of SunScan measurements, including LAI. The probe has to serve as its own above-canopy reference, so requires steady light conditions.</td>
</tr>
</tbody>
</table>
SunData software modelling

SunScan uses a sophisticated model of light transmission through a uniform canopy, based on work by Campbell (1985), and Norman and Jarvis (1975) and taking into account the following factors:

- Direct & Diffuse incident light
- Leaf PAR absorption
- Canopy Leaf Area Index
- Solar zenith angle
- Canopy Leaf Angle Distribution
- Transmitted fraction

Solar zenith angle is calculated from the actual time, latitude and longitude. Leaf Angle Distribution and Leaf Absorption are estimated by the user. All other variables necessary to calculate LAI are measured directly.

Because the relative contributions of direct and diffuse incident light are measured at the same time as the transmitted PAR, readings can be made in a wide range of daylight conditions. However we advise against taking measurements when the sun is strong and near the horizon, when large errors may occur. The assumptions and calculations made in the SunData Software are fully explained in the user manual, along with practical advice on how to use the system effectively.

Sunshine Sensor type BF5

SunScan features a unique optional reference sensor which measures the direct and diffuse components of light simultaneously above the canopy.

The special shading pattern of the dome is matched to an array of photodiodes in such a way that at least one photodiode always sees an unobstructed solar disc and at least one is always in full shadow.

The BF5 uses this information to calculate whether the sun is shining and to measure the direct and diffuse components of solar radiation, avoiding the need for the shade ring adjustments required with conventional diffuse light sensors (levelling is the only adjustment required).

Data analysis and storage

Rugged PDA type RPDA3

The RPDA3 is an exceptionally robust handheld PDA which collects and analyses readings from the SunScan Probe. Raw readings, and derived functions such as LAI, can be displayed, reviewed and stored in the field by the SunData Software; groups of readings can be averaged if required.

Readings are stored in the internal memory which holds >1 million readings, or in widely available Micro SD cards which provide removable data storage. Collected data can be transferred easily to a PC.

Unattended logging with RPDA3

The SunData Software can automatically take readings and averages from the SunScan Probe, at user-defined intervals from 1 second to 24 hours. This can be used for example to obtain diurnal readings of canopy light interception at a particular location.

Radio link

The radio link connects the SunScan Probe and the BF5 reference sensor, eliminating the need for a long connecting cable. The link operates on the 434 MHz licence-free frequency and can transmit up to 250 m line-of-sight or 100 m to 200 m in vegetation. The radio link system comprises an add-on module for the BF5 reference sensor (BF5-RL4) and a specially modified SunScan Probe (SS1-RL4).
SunScan specifications

SunScan Probe type SS1
- Active area: 1m x 13 mm wide, sensor spacing 15.6 mm
- Spectral response: 400 - 700 nm (PAR)
- Measurement time: 120 ms
- Maximum reading: 2500 µmol.m⁻².s⁻¹
- Resolution: 0.3 µmol.m⁻².s⁻¹
- Linearity: better than 1%
- Accuracy: ± 10%
- Analogue output: 1 mV per µmol.m⁻².s⁻¹
- Serial interface: RS232, 9 pin female 'D' connector
- Environmental: IP65, 0 - 60°C working temp
- Size & Weight: 1300(l) x 100(w) x 130(h) mm, 1.7 kg
- Power: 4 x AA Alkaline cells (lifetime up to 1 year)

Sunshine Sensor type BF5
- Output sensitivity total & diffuse: 1 mV / µmol.m⁻².s⁻¹ PAR cosine corrected
- Accuracy: Total ± 12% Diffuse ± 15% [± 10 µmol.m⁻².s⁻¹]
- Temperature range: -20 to + 50°C with alkaline batteries
- Range: 0 - 2500 µmol.m⁻².s⁻¹ (total & diffuse)
- Spectral response: PAR (400-700 nm)
- Power: 2 x AA Alkaline cells (lifetime up to 1 year)
- Input voltage: 5 - 15 V DC
- Size & Weight: 120 x 122 x 95 mm, 635 g

Rugged PDA type RPDA3
- Screen: Sunlight readable
- Operating system: Windows Mobile 6.5
- Display options: a) LAI b) PAR average c) ALL individual sensor readings
- Environmental: IP67, -30°C to 60°C, 1.2 m drop test
- Power: Rechargeable battery, 12 h continuous use
- Memory: > 1 million readings
- Size & Weight: 191 x 80 x 35 mm, 490g

Ordering information

SunScan systems
All systems are based on the main components listed below.

SunScan Complete System type SS1-COM SunScan Probe, SDA2 SunData Software, RPDA3, Sunshine Sensor type BF5 with cables type BF5-SS1-05 and EXT/8W-05, Tripod and Carrying Case.

SunScan Complete System with Radio Link type SS1-COM-R4 as above with BF5-RL4 and SS1-RL4.

SunScan Standard System type SS1-STD3 SunScan Probe, SDA2 SunData Software and RPDA3.

Main components
- SunScan Probe type SS1 including alkaline batteries and user manual.
- SunScan Probe with radio link type SS1-RL4
- SunScan Radio Module type BF5-RL4 radio link transmitter for attachment to BF5 sensor
- SunData Software type SDA2
- Rugged PDA type RPDA3 Recon X-Series PDA including rechargeable battery, comms cable and carrying case.
- Sunshine Sensor type BF5 including user manual (NB requires cable type BF5-SS1-05 for use with SS1 Probe or type SP-BF/w-05 for use with data logger. For extension cables see below).
- Telescopic Tripod type SS-TD for mounting BF5.
- Carrying Case type SCC1 for SunScan Probe and accessories.

Optional items
- Holster belt for PDA and SS1 type SS-HB1 for hands-free operation of PDA type RPDA3 and temporary parking of the SunScan Probe.
- Extension cables: both the BF5-SS1-05 and SP-BF/w-05 cables can be extended with the EXT range of cables EXT/8W-05, EXT/8W-10 and EXT/8W-25 (5, 10 and 25 m).
- Logger cable type SP-BF/w-05 for SunScan Probe connection to a data logger (not for use with RPDA3).

Upgrades
Please enquire for upgrades to radio link capability or from BF3 to BF5 sensor or from Data Collection Terminal type DCT2 to the rugged PDA type RPDA3.

For spares, recalibration and consumables please enquire.

Calibration
The SunScan Probe (SS1) and Sunshine Sensor (BF5) are calibrated under a standard light source against an accurate PAR quantum sensor traceable to national standards. The spectral and cosine responses of the sensors approximate to the ideal response (graphs available on request), but fall off at the extremes of the range.

Under most normal daylight conditions errors due to the deviation are small, but it is possible, for example under artificial light, to find larger errors in the absolute values measured. Because the BF5 Sunshine Sensor and SS1 Probe are closely matched, this has minimal effect on the canopy calculations which are based on ratios of incident and transmitted light.

Delta-T can also supply **HemiView**, a system for obtaining and processing hemispherical images of plant canopies. If your research involves high irregular canopies such as forests, please download a HemiView data sheet.

Delta-T Devices Ltd
130 Low Road, Burwell, Cambridge CB25 0EJ, UK
Tel: +44 (0) 1638 742922
sales@delta-t.co.uk www.delta-t.co.uk